Problems and Results on Polynomials and Interpolation

نویسنده

  • P. ERDŐS
چکیده

This is not a survey paper . I am somewhat out of touch with this subject and therefore would not dare to attempt such a paper . I shall just discuss some of the problems my collaborators and I have worked on for more than 40 years . In particular, I shall concentrate on problems where there has been some progress recently apart from this I shall discuss a few of my favourite problems . Most of the problems discussed are mentioned in [51, [6] or [7] . These papers all contain extensive references and many solved and unsolved problems. Many of the problems in [7] were settled by Pommerenke and Elbert (for references see [6] ) . First of all, I shall discuss problems on polynomials and then problems on interpolation .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

COMPOSITE INTERPOLATION METHOD AND THE CORRESPONDING DIFFERENTIATION MATRIX

Properties of the hybrid of block-pulse functions and Lagrange polynomials based on the Legendre-Gauss-type points are investigated and utilized to define the composite interpolation operator as an extension of the well-known Legendre interpolation operator. The uniqueness and interpolating properties are discussed and the corresponding differentiation matrix is also introduced. The appl...

متن کامل

A novel modification of decouple scaled boundary finite element method in fracture mechanics problems

In fracture mechanics and failure analysis, cracked media energy and consequently stress intensity factors (SIFs) play a crucial and significant role. Based on linear elastic fracture mechanics (LEFM), the SIFs and energy of cracked media may be estimated. This study presents the novel modification of decoupled scaled boundary finite element method (DSBFEM) to model cracked media. In this metho...

متن کامل

Analysis of High-order Approximations by Spectral Interpolation Applied to One- and Two-dimensional Finite Element Method

The implementation of high-order (spectral) approximations associated with FEM is an approach to overcome the difficulties encountered in the numerical analysis of complex problems. This paper proposes the use of the spectral finite element method, originally developed for computational fluid dynamics problems, to achieve improved solutions for these types of problems. Here, the interpolation n...

متن کامل

gH-differentiable of the 2th-order functions interpolating

Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...

متن کامل

Optimization Problems over Non-negative Polynomials with Interpolation Constraints

Optimization problems over several cones of non-negative polynomials are described; we focus on linear constraints on the coefficients that represent interpolation constraints. For these problems, the complexity of solving the dual formulation is shown to be almost independent of the number of constraints, provided that an appropriate preprocessing has been performed. These results are also ext...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1980